Gib eine Aufgabe ein ...
Lineare Algebra Beispiele
Schritt 1
Schritt 1.1
Zwei Matrizen können nur dann multipliziert werden, wenn die Anzahl der Spalten in der ersten Matrix der Anzahl der Zeilen in der zweiten Matrix entspricht. In diesem Fall ist die erste Matrix und die zweite Matrix ist .
Schritt 1.2
Multipliziere jede Zeile in der ersten Matrix mit jeder Spalte in der zweiten Matrix.
Schritt 2
Schreibe als lineares Gleichungssystem.
Schritt 3
Schritt 3.1
Löse in nach auf.
Schritt 3.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.1.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.1.2.1
Teile jeden Ausdruck in durch .
Schritt 3.1.2.2
Vereinfache die linke Seite.
Schritt 3.1.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.1.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.2.1.2
Dividiere durch .
Schritt 3.1.2.3
Vereinfache die rechte Seite.
Schritt 3.1.2.3.1
Vereinfache jeden Term.
Schritt 3.1.2.3.1.1
Dividiere durch .
Schritt 3.1.2.3.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.1.2.3.1.3
Faktorisiere aus heraus.
Schritt 3.1.2.3.1.4
Faktorisiere aus heraus.
Schritt 3.1.2.3.1.5
Separiere Brüche.
Schritt 3.1.2.3.1.6
Dividiere durch .
Schritt 3.1.2.3.1.7
Dividiere durch .
Schritt 3.1.2.3.1.8
Mutltipliziere mit .
Schritt 3.2
Ersetze alle Vorkommen von durch in jeder Gleichung.
Schritt 3.2.1
Ersetze alle in durch .
Schritt 3.2.2
Vereinfache die linke Seite.
Schritt 3.2.2.1
Vereinfache .
Schritt 3.2.2.1.1
Vereinfache jeden Term.
Schritt 3.2.2.1.1.1
Wende das Distributivgesetz an.
Schritt 3.2.2.1.1.2
Mutltipliziere mit .
Schritt 3.2.2.1.1.3
Mutltipliziere mit .
Schritt 3.2.2.1.2
Addiere und .
Schritt 3.3
Löse in nach auf.
Schritt 3.3.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 3.3.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.3.1.2
Subtrahiere von .
Schritt 3.3.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.3.2.1
Teile jeden Ausdruck in durch .
Schritt 3.3.2.2
Vereinfache die linke Seite.
Schritt 3.3.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.3.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.2.1.2
Dividiere durch .
Schritt 3.3.2.3
Vereinfache die rechte Seite.
Schritt 3.3.2.3.1
Dividiere durch .
Schritt 3.4
Ersetze alle Vorkommen von durch in jeder Gleichung.
Schritt 3.4.1
Ersetze alle in durch .
Schritt 3.4.2
Vereinfache die rechte Seite.
Schritt 3.4.2.1
Vereinfache .
Schritt 3.4.2.1.1
Mutltipliziere mit .
Schritt 3.4.2.1.2
Addiere und .
Schritt 3.5
Liste alle Lösungen auf.